
DOCUMENT RESUME

ED 382 669 TM 023 107

AUTHOR Wainer, Howdrd; And Others
TITLE An Adaptive Algebra Test: A Testlet-Based,

Hierarchically-Structured Test with Validity-Based
Scoring. Technical Report No. 90-92.

INSTITUTION Educational Testing Service, Princeton, N.J.
REPORT NO ETS-RR-90-21
PUB DATE 90
NOTE 30p.

PUB TYPE Reports Evaluative/Feasibility (142)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *Adaptive Testing; *Algebra; Comparative Analysis;

*Computer Assisted Testing; Educational Assessment;
Models; Prediction; *Scoring; Secondary Education;
Test Construction; Test Format; Test Items; Test
Length; *Test Validity

IDENTIFIERS *Hierarchical Models; *Testlets

ABSTRACT
The initial development of a testlet-based algebra

test was previously reported (Wainer and Lewis, 1990). This account
provides the details of this excursion into the use of hierarchical
testlets and validity-based scoring. A pretest of two 15-item
hierarchical testlets was carried out in which examinees' performance
on a 4-item subset of each testlet was used to predict performance on
the entire testlet. Four models for constructing hierarchies were
considered. These presentation hierarchies were compared with one
another and with an optimally chosen set of four linearly
administered items. The comparison was carried out using both the
root mean square error and the conditional posterior variance as the
criterion. It was found on cross validation that although an adaptive
test is everywhere superior to a fixed format test, this superiority
is crucially dependent on the quality of the items. When items vary
considerably in quality a fixed format test, which uses the best
item :, can do almost as well as an adaptive test of equal length.
Eleven figures and three tables present analysis results. An appendix
presents some test items. (Contains 16 references.) (Author/SLD)

Reproductions supplied by EDRS are the best that can be made
from the original document.

Ak*************************************************'*******************



RR-93-21

An Adaptive Algebra Test:
A Test let-based, Hierarchically-

Structured Test With Validity-based
Scoring

U.S. DEPARTMENT OF EDUCATION
Of Ica 04 Educational Re Vlatc... and Improvement
EO TIONAL RESOURCES INFORMATION

O.
CENTER (ERICI

114 document has been reproduced as
rceoved from the person or organuahnn
<0.9.0atmg rt

C Minor changes have been made to onpro,
rapprOduChOn OuahIY

P otnIs of slew or opnons stated ,n INS Coco.
Mehl do not neCeSSanly represent °Moat
OEM POS.bon or policy

Howard Wainer
Charles Lewis
Bruce Kaplan

James Braswell
Educational Testing Service

PROGRAM
STATISTICS
RESEARCH

TECHNICAL REPORT NO. 90-92

Educational Testing Service
Princeton, New Jersey 08541

2

BEST COPY AVAiLABLE

PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

R. 61.--1

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).-



Copyright (C) 1990, Educational Testing Service All Rights Reserved



The Program Statistics Research Technical Report Series is designed
to make the working papers of the Research Statistics Group at Educational
Testing Service generally available. The series consists of reports by the
members of the Research Statistics Group as well as their external and
visiting statistical consultants.

Reproduction of any portion of a Program Statistics Research
Technical Reports requires the written consent of the author(s).



Testlet III 1

An Adaptive Algebra Test:
A testlet-based, hierarchically-structured test

with validity-based scoring§

Howard Wainer
Charles Lewis
Bruce Kaplan

and
James Braswell

Educational Testing Service

Abstract

Earlier (Wainer & Lewis, 1990) we reported the initial development
of a testlet-based algebra test. In this account we provide the details of
this excursion into the use of hierarchical testlets and validity-based scor-
ing. A pretest of two 15 item hierarchical testlets was carried out in which
examinees' performance on a four item subset of each testlet was used to
predict performance on the entire testlet. Four models for constructing hi-
erarchies were considered. These presentation hierarchies were com-
pared with one another and with an optimally chosen set of four linearly
administered items. The comparison was carried out using both the r' of
mean square error and the conditional posterior variance as the criterion.
It was found on cross validation that although an adaptive test is every-
where superior to a fixed format test, this superiority is crucially de-
pendent upon the quality of the items. When items vary considerably in
quality a fixed format test, which uses the best items, can do almost as
well as an adaptive test of equal Laigth.

§ This research was supported by the Educational Testing Service's Program Research Planning Council;
we are grateful for the help that this provided. We would like to express our thanks to Norma Norris for her
help in imual data analysis and to Phyllis Murphy for her aid in gathering the data.
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I. Introduction

Modern tests must bear an increasingly heavy burden. No longer is a test a single
purpose instrument designed specifically for diagnosis, for placement, or for admission.
Now a test score is often used to aid policy makers in decisions about the efficacy of vari-
ous funding practices. The same score helps to direct students to suitable instruction. It also
is used to support admission decisions. Oftentimes the same test is used for all of these
purposes even though it is known that a special instrument, specifically designed for that
particular purpose, would serve better. Yet, using different measuring instruments for
different purposes is not always practical because of the heavy burden that it places on the
student. Student time is a scarce and valuable commodity and cannot be used inefficiently.
So far, triage decisions about the relative importance of each purpose have had to be made.
This has resulted in the use of tests that are suboptimal for some (indeed sometimes all)
purposes.

It has been one of the tasks of modern testing to make the testing of individuals
more efficient. This is so that the same amount of testing time can be used to accomplish
more goals. A pair of such goals might be utilizing the test for the dual purposes of mea-
suring learning and prescribing instruction. One result of this work has been the develop-
ment of adaptive testing (Wainer et al, 1990), which, when stripped to its essentials, is a
system that chooses to administer only those items that will be most informative about an
examinee's proficiency, and stops as soon as proficiency has been estimated to within a
predetermined level of accuracy. This methodology, in its preliminary implementations, has
yielded increases in testing efficiency of about 40% (i.e. the accuracy obtained previously
with 100 items could be accomplished with only about 60 items). Ofcourse these are aver-
age gains, and vary as a function of the proficiency of the examinee. Examinees whose
proficiencies are at the extremes of the distribution typically have greater gains of effi-
ciency; those in the middle, smaller.

Since adaptive testing achieves its increased efficiency through a judicious choice of
items, it stands to reason that examinees with different proficiencies will have taken differ-
ent tests. The glue that has been used traditionally to hold these different tests together (to
allow comparisons among individuals who have conceivably all taken different tests) is
item response theory (IRT). In IRT, the examinee's observed performance is used to esti-
mate his or her position on an underlying latent variable. Yet this is not the only way that
this can be done. Another strategy, devised by Lewis (in preparation), is validity-based
scoring (VBS) which utilizes methods described by Breiman et al (1984). This methodol-
ogy uses the reduced length test chosen by an adaptive item choice algorithm as a predictor
of performance on some criterion variable. If we wish to think of this in terms of traditional
test theory, we could choose the score on the total item pool as the criterion variable. Such
an engineering approach has much to recommend it. Aside from not requiring the often
untestable assumptions of IRT, it forces the tester to firmly establish what is the validity
criterion, and to do appropriate validity studies in advance of scoring any test. In our view,
anything that encourages the accomplishment of more validity studies is, prima facie, a
leg up on any competing method which does not.
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The accuracy of any test in a particular proficiency-region is determined by the
number (and, to some extent, the quality) of items in that region. In traditional linearly ad-
ministered tests the items were typically most densely packed where the examinees' profi-
ciency was the densest. This was not true for tests with a known cut-score. In such a
situation, test developers try to make the test most accurate in the region of the cut-score.
However, for other tests the eventual use was less clear (i.e., college admissions tests have
different regions of importance depending upon the specific college; selective schools need
more precision at the high end, less selective ones at lower regions). Consequently, general
tests were built to provide precision roughly in proportion to the density of the examinee
proficiency distribution. What this means practically, is that large-scale tests are better able
to discriminate in the middle of the score distribution than they are at the extremes. This has
an unfortunate side-effect. Specifically, it means that if the proficiency distribution of a
particular subgroup in the e.;:arninee population is markedly different from that of the ma-
jority, that subgroup will get a less accurate test. In the past, when practical considerations
bound us to the use of fixed format tests, we were helpless to correct this problem. Now
that is no longer the case.

Adaptive measurement, with appropriately chosen stopping rules, can provide a
test that is equally accurate for all examinees. The accuracy of a traditional test was typically
measured by its reliability an aggregate statistic; whereas in an adaptive test some trans-
formation of the information function is quite often used. Tnis is typically shown as a
graph plotting the standard error of estimate of proficiency (s.e.[ OD against proficiency
(0). This is ironic. In a traditional test, the accuracy of the test varied greatly across the
range of examinee proficiency, and so such a plot would have been important and useful.
In an adaptive test one might use such a plot as a control to be sure that everyone is getting
an acceptably accurate test the test information curve should be relatively flat across the
proficiency region in which decisions are to be made. However, once we are assured that it
is relatively flat, the aggregate statistics developed for fixed format tests can at last have
their restrictive assumptions fulfilled and so would be acceptably accurate. Of course this is
exactly the opposite of what is done. In any study that compares the performance of an
adaptive test to that of one with a fixed format, the measure of comparison is critical. If one
uses an aggregate measure, the efficacy of the adaptive test is denigrated because exami-
nees' proficiencies bunch up in the middle. Thus any test that concentrates its efforts
(items) in the middle will do very well. But how does it do in the extremes? An adaptive
test will also do well in the middle, but can do equally well in the extremes. However be-
cause there are relatively fewer examinees in the tails, its superiority in those regions will
be diluted. In this paper we provide some aggregate comparison statistics, but we rely more
strongly on a measure of conditional accuracy. For many purposes, this latter measure is
the more appropriate. This is discussed more fully in sections III and IV.

IL The Problem

Using computers to administer tests is more expensive initially than paper and pen-
cil methods, but has many advantages (see Wainer et al, 1990, Chapter 1 for a fuller de-
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scription). Among these are: ease of modification/updating of item pool, better control of
security, and speed of scoring. Dwarfing these, in terms of potential importance, is the ca-
pacity to ask qualitatively different kinds of questions that can test qualitatively different
traits. Where the multiple-choice format seems ideally suited to a paper and pencil test, a
computer administered exam has enormous possibilities that have only just begun to be ex-
plored.

If the test is to be given by computer anyway, it seems logical to try and make its
administration as efficient as possible. Thus, why not make it adaptive? This minimizes the
respondent load or increases the breadth and/or precision of measurement. But item choice
algorithms in adaptive testing (Wainer et al, 1990, Chapter 5) tend to focus on the statistical
characteristics of the items (the potential gain in Fisherian information) rather than their ap-
propriateness from the point of view of the item's content. This works fine if the unidi-
mensionality assumption explicit in current forms of IRT -based adaptive testing is viable. It
is more problematic if this assumption is violated. One solution to this problem is the testlet
(proposed by Wainer & Kiely, 1987, and described in greater detail by Wainer & Lewis,
1990). A testlet can be a small number of items that provides a coherent test of a subset of
the content domain. The items and their order of presentation can be chosen by a test
development expert with the full support of pretest statistics, so that the joint goals of
maximal statistical information and content integrity may be served.

The ultimate goal is to prepare a pool of calibrated testlets that can be combined in a
variety of ways to efficiently and reliably test a particular domain. Using a testlet rather than
an item provides us with a more stable building block for the measurement edifice. How
much efficiency is added by making the testlets internally hierarchical? What is the best
method for constructing this hierarchy? How stable are the results thus obtained? This
study is an attempt to begin to answer these questions.

III. The structure of the study

In this investigation we studied proficiency in algebra. Two 15 item testlets were
constructed that spanned basic algebra skills (Test let 1) and factoring skills (Testlet 2).
The items written for the 15-item testlets were developed to reflect different levels of
understanding of a topic (e.g., factoring) and so that various combinations of items could
be administered in any sequence without violating the canons of good test construction.
We studied both testlets, but since the results were so similar on both of them we report
only the results on Testlet 2. The items for Testlet 2 are provided in the appendix. These
testlets were given to 2080 ninth and tenth graders. Each student received all 30 items. The
resulting data were divided randomly into two sets of 1040 c .uninees. We shall denote the
first set as the exploratory sample; the second set was placed in reserve for cross-valida-
tion purposes and was called the confirmatory sample. The item response data was fit with
a three parameter logistic response model using marginal maximum likelihood (Bock &
Aitken, 1981; Mislevy & Bock, 1983). With these results in hand each testlet was formed
into three separate (but related) hierarchical structures. These structures (and the two others
which follow) then formed the basis of a simulated adaptive administration. That is, the
complete data :sere re-analyzed as though students had taken one of these types of tests. In

6
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fact nobody actually responded to the items in any of the ways described here. The struc-
tures formed are:

1. difficulty - structured The 15 items of each testlet were ordered by their
IRT difficulty parameter (b) , the first item presented was the middle one
(item 8). If this was answered correctly it was followed by item 12, if
incorrectly by item 4. The full presentation tree for Testlet 2 is shown in
Figure 1. The item numbers in these figures refer to their b-ordering: 1 is
the easiest item, 15 the most difficult.

2. Stepwise optimal tree without replacement This tree was formed by
choosing, as the start, the item that yielded the minimum posterior vari-
ance in the two groups thus formed. The second item on each branch
chosen was the one that, when added to the first, minimized the posterior
variance in the four groups thus formed. This was continued until a test
length of four was reached. The step-wise optimal tree thus devised for
Testlet 2 is shown in Figure 2. After an item was used as one node of
the tree it was not used again. These trees are formed from the top down
and from right to left (i.e., at any level, the rightmost item was chosen
first). Consider the third row of items in Figure 2. Item 7 was,chosen for
examinees who got item 6 wrong because it was the best one remaining
since items 2, 4 and 11 were already used Compare with the tree in Fig-
ure 3 in which the item choice algorithm could opt for item 4 again.

3. Stepwise optimal tree with replacement The formation rule for this tree
is identical to that described in (2), except that after an item was wed it
was placed back in the pool with the possibility of its being reused on
another branch. The tree thus formed for Testlet 2 is shown in Figure 3.

In addition to these three trees two others were formed. The first of these was
formed before any data were gathered. We refer to this tree as:

4. Expert structured The 15 items were written and structured by an expert in
the development of mathematics tests without any knowledge of the
statistical information associated with the items. The presentation tree for
Testlet 2 is shown in Figure 4.

Last, but of great practical importance, we must ask, "Do we really need adaptive
testing?" How much better do we do with adaptive item selection than we would have done
by merely choosing the best four item subset? To examine this possibility, we formed:

5. Best four item test A fixed length test of four items (shown as a tree in
Figure 5) by examining all 1365 possible four item tests (15 choose 4
possibilities) and selecting the one that performed best.This procedure
yields a result that is a proper subset of optimal trees, and so must be
surpassed by method 3, yet using a linearly administered test allows
much simpler technology (pencil and paper) than any adaptive test. How
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much is our accuracy affected? Is the gain in accuracy associated with
adaptive administration worth the additional expense?

Figure 1. Item tree ordered by difficulty

14

The path to the right indicates a correct
response (+): to the left an incorrect one (-).

Figure 2. Item tree sampled without replacement



Figure 3. Item tree sampled with replacement
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Figure 5. Item tree using only four items
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The structure of the criterion variable.

Validity-based scoring can use any suitable criterion variable. For example, using
this sort of scheme, one might provide the expected first year college grade point average as
an individual's SAT score. In this study we use a criterion score of more modest scope,
specifically, we wish to predict the score on the total 15 item testlet from a four-item sub-
test. We scored the testlets using both the raw score metric (number right) and the latent
scale yielded by item response theory. While there are some interesting differences, they
are not so profound to justify dual presentation at this time. Thus, we shall present our re-
sults within an IRT framework. Specifically, we estimate proficiency (0) on the entire (15
item) pool and then try to predict it as accurately as possible from the various 4-item
branches. The predicted value of proficiency at a particular node in the prediction tree is the
mean value of the criterion score for all of those at that node.

IV. The results

All of the results reported in this section are based on what obtained when the trees
derived on the exploratory sample were tried on the confirmatory sample. There was some
shrinkage in this cross-over, but surprisingly little. We will only discuss the results from
Testlet 2.

Shown in Table 1 are the BILOG (Mislevy & Bock, 1983) estimates of the item
parameters obtained from the exploratory sample.

Table 1
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Item Parameters for the 15 items of Test let 2

Item
Number a b c

1 0.61 -3.28 0.15
2 1.05 -0.82 0.14
3 0.73 -0.76 0.15
4 1.34 -0.64 0.16
5 0.59 -0.41 0.12
6 0.98 -0.35 0.12
7 0.64 -0.26 0.20
8 2.07 0.22 0.08
9 1.86 0.23 0.08
10 1.37 0.74 0.18
11 1.37 0.83 0.10
12 1.11 0.88 0.35
13 1.12 1.27 0.24
14 1.00 1.78 0.08
15 1.01 1.82 0.09

As a first attempt to measure the comparative efficacy of the five item trees de-
scribed in section III and depicted in Figures 1 through 5 we calculated the 112 (calculated
from the r? do of the between group sums of squares of the groups shown in the various
tree diagrams, to the total sum of squares) that obtained with each item presentation tree on
the confirmatory sample. These are shown in Table 2.

Table 2.

Tree precision - - Represented by ri 2

Tree 712

1. difficulty-ordered .48
4. Expert structured .54

5. Best Four .66
2. wlout replacement .69
3. wi replacement .71

These summaries do convey something of the order of finish of the various pre-
sentation algorithms, but because they are averaging over the observed proficiency distri-
bution, they do not convey the relative performance of these methods at any particular value
of 0. To illustrate this, consider the information functions shown in Figure 6. One repre-
sents the best 4-item tree (on the basis of ri2 ) the other the worst. Note that even though
overall we would surely prefer the tree associated with items 4, 5, 6 and 13, higher profi-
ciency examinees would be much better tested with the more extreme items in the worst
tree.

13
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Figure 6

The information functions for the best four items
and the worst four items on the basis of

a multiple squared correlation

Items 1, 12, 14, 15

n2_.27

Because we are interested in the accuracy of the test over the entire range of profi-
ciencies, we will not use a single summary statistic to characterize a structure's efficacy.
Rather, we will follow Birnbaum's (1968) rand more recently, Ramsay's (1982)1 advice
and use a function. Specifically we will do this in two different ways; this ecumenical ap-
proach reflects the two prevailing views of modern statistics. We will examine the theoreti-
cally interesting (but unobservable in practice) statistic:

1. the actual root mean square error (the square root of the average squared difference
between the estimated value of 0 and the true value of 8 within category) shown as a
function of the true 0.

And the more practically useful,

2. Posterior standard deviation shown as a function of the estimated posterior mean.

Tree 3 is, in a stepwise sense, the best that we can do. Each person gets the best
four item test that can be constructed from the available 15 item pool. How stable its supe-
riority is on cross validation is an empirical question that we examined here; other trees,
which are less dependent upon peculiarities in the exploratory (calibration) sample might
surpass it on cross-validation. For example, tree 4, which does not depend upon the data

i 4
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at all for its structure, has no shrinkage on cross validation. Despite these concerns, our
finding has been with this test, these examinees, and this sample size, that shrinkage is
minimal and the order of finish we saw in the exploratory sample remained the same in the
confirmatory sample. In the rest of the discussion we will call tree 3, the adaptive test.

Tree 5 is the best fixed format four item test that could be made from this item pool.
It does not do as well as tree 3, but it can be administered in a paper and pencil format, and
it does do, overall, about two-thirds as well as a test almost four times its length. In the rest
of this discussion we will call this the fixed format test.

An obvious question is, "Is the marginal gain associated with an adaptive test worth
the cost?" Before we address this issue, let us try to understand just how much better the
adaptive test is than the fixed format test.

Figure 7 provides a comparison of all five trees, shown as a percentage of their root
mean square error of tree 3. Anytime they are greater than 100% it means that tree 3 is su-
perior at that point. This figure shows clearly that the difficulty ordered tree (tree 1) and the

tree based on expert judgement, tree 4 (labelled here "a priori") are inferior in the tails. It
shows that all trees do about equally well in the middle of the distribution. An examination
of these results (and a little post hoc intelligence) tells us that there are really only two trees

of interest. These are trees 3 and 5.
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Figure 7

In the tails of the distribution good performance
requires the careful choice of items

----- Difficulty
Apriori

Boas

Shown in Figures 8 and 9 are comparisons of the fixed format test (the best four
item test) with the optimal adaptive test. In Figure 8 is shown the actual root mean
square error (in the metric established by the standard deviation of the proficiency distribu-
tion) for the two kinds of tests. The increase of error in the tails is exactly what would be
expected in any imperfect prediction system. This is caused by the kind of inward regres-
sion that has been well known since Galion (1886). While one can tell from this plot that
the adaptive test dominates the fixed format test at virtually all levels of proficiency, the ex-
tent of this domination is unclear.
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12

Figure 8

A 4-item adaptive test dominates, in accuracy,
the optimal 4-item fixed format test

0.8

0.8

Step-wise optimal tree

-2

Mean Proficiency (Theta)

11111=111.

Figure 9 shows the fixed format test's RMS error as a percentage of the adaptive
test's error. Thus a point at 10% means that at that point the fixed format test has 10% more
error. Similarly a point at -10% indicates that at that point the fixed format test has 10% less
error.



Figure 9

The adaptive test is almost everywhere
more accurate than the fixed test

Testlet III - 14

Mean Proficiency (Theta)

Even just a cursory view of Figure 9 indicates that the adaptive test has, on average,
about 12% less error than the fixed format test; that sometimes it can be almost 30% more
accurate. Somewhat surprising (at least to us) is the shape of the error function. We ex-
pected the adaptive test's advantage to be largest in the tails of the distribution. This does
not appear to have been the case.

So far we have examined the error of prediction against the true value of profi-
ciency. This is not the situation that we will face in practice. If we knew 0 why would we
need the test? What the user will know is the mean value of 9 that was obtained in the va-
lidity study for all individuals at a specific terminal node of the presentation tree. The logi-
cal question is "what is the observed variance in 0 among individuals with the same per-
formance on the 4-item testlet?" To study this question we can compare the posterior stan-
dard deviations for the two kinds of test trees. Such a comparison is shown in Table 3.
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Table 3

Comparing two kinds of testing trees on the location and spread
of their posterior distributions

Adaptive tree with replacement

Mean Posterior
N Proficiency Std Dev.(Oi

Best 4-item fixed format test

Mean Posterior
N Proficiency Std. Dev.(01

78 -1.35 0.62 120 -1.06 0.62
57 -0.94 0.59 27 -0.92 0.72
61 -0.81 0.55 25 -0.76 0.64
33 -0.77 0.59 109 -0.74 0.58
29 -0.55 0.63 68 -0.61 0.55
39 -0.52 0.59 21 -0.54 0.78
85 -0.51 0.44 115 -0.25 0.52
149 -0.23 0.46 28 -0.05 0.52
30 0.09 0.49 53 0.12 0.57
43 0.37 0.46 21 0.17 0.72
97 0.40 0.53 43 0.23 0.56
92 0.80 0.45 47 0.39 0.47
133 0.83 0.56 25 0.54 0.63
14 0.86 0.53 90 0.57 0.53
41 1.32 0.54 44 0.77 0.42
59 1.52 0.53 204 1.21 0.57

A careful look at this table shows us that the adaptive test spreads out the examinees
a little better (the mean proficiencies of the extreme score groups are more extreme) and has
(on the average) about an 8 to 10 percent narrower posterior density. This is a little hard to
see within the table. A somewhat clearer look can be had if we graph the estimated poste-
rior means and standard deviations for each of the test formats. In Figure 10 is such a
graph which we have augmented by including a fitted curve to the posterior standard
deviations of the adaptive test. We can now see that the posterior standard deviations of the
fixed test are almost always above this curve; sometimes far above it.

19
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Figure 10

The adaptive test provides a tighter posterior distribution
over the entire range of estimated proficiency
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V. Conclusions

One purpose of this investigation is to illustrate how validity-based scoring can be
used with hierarchically structured testlets. We have described this within the context of
IRT, but we could have done it in the raw score metric just as easily. IRT is useful in this
area, but by no means crucial. The asymptotic results depicted in the information functions
were easier to do with IRT, but are subject to all of the well-known caveats associated with
the use of any asymptotically-based statistic stemming from a strong measurement model.

Some of the results described here were unexpected. The "almost-no-shrinkage on
cross-validation" was a pleasant surprise. We expected the adaptive test derived from the
optimal tree structure to prove out to be the best, and it was, but the robustness seen with
minor variations in tree structure was a mixed blessing. It was one clue that points us to-
ward the conclusion that the available item pool was neither large enough nor of high
enough quality to allow the item choice algorithm the opportunity to really show its stuff.
Another finding that hints in this direction was the unexpectedly good performance of the
fixed format test.

These results support our contention that while adaptive testing is more accurate
than fixed format testing, it's hard to justify the expense of computerizing just for this in-
crease in accuracy. Rather it should be viewed as an extra benefit that gets thrown in almost
for free when computers are used to administer tests. Thus, the logic goes, if we need a
computer to administer the test we might just as well make it adaptive; not "let's give our
test via computer so that we can make it adaptive." Although the modest advantage of
adaptive testing within a testlet could be magnified if testlets are strung together hierarchi-
cally. We have no data on this as yet.

Nevertheless, enough experience is currently available so that we feel that it would
be of some potential use to describe one way that testlets can to be hierarchically combined
into a full, adaptive, test. Let us suppose that an examinee takes Test let 1 (shown in figure
11 below), and for the sake of this example, assume that Test let 1 was hierarchically
structured internally. We are now faced with a decision. Do we administer Test let 2, which
is much easier? Or do we administer Test let 3, which is much more difficult? In an algebra
test, Test let 1 might be represented by a set of questions on basic algebra skills, Test let 2
might be simple arithmetic, and Test let 3 might be the sort of factoring testlet described in
this paper. A reasonable concern would be that if we incorrectly consign an examinee to the
left branch of this tree, there is no way (short of a re-examination) for that examinee to re-
cover. Indeed, under one conception of the structure we have just described this is true.
But it is also true that each allowance for recovery that is made compromises the efficiency
of the testing. The challenge is to maintain maximal efficiency while controlling
misclassification errors.

A solution that has proved useful in other testing contexts (e.g., Lewis & Sheehan,
1990; Wainer & Lewis, 1990) involves deriving a loss function and from this, setting a cut
score. After the completion of Test let 1 we then decide if the examinee is significantly
above or below the cut score. For some examinees this will be decided on the basis of this

21
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testlet; for others it will not. Thus after each testlet we are faced with the trinary decision
"Go up," "Go down," or "Keep on testing." This process is shown schematically in Figure
11. Testlet 1* can be thought of as a parallel form of Testlet 1. By adjusting the stringency
of the decision process we can control the likelihood of both sorts of errors while still al-
lowing those individuals for whom the decision is clear to progress through the system
efficiently. The levels of error that we allow ourselves will determine the number of parallel
forms of each testlet that we need to construct. Of course the posterior proficiency distribu-
tion that emerges from each testlet becomes the prior for the next. This allows the testing to
progress with increasing speed.

Ability is
not high
enough to
advance

Testlet
2

Figure 11

Testlet
1

Cannot
decide

yet

Testlet
1*

Ability is high
enough to
advance

1

Testlet
3
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Appendix

The Items for Test let 2

1. Which is NOT a factor of 36?

(A) 2

(B) 4

(C) 6

(D) 8

(E) 12

2. (x- 3 )2=

(A) x 2

(B) x2 6x + 9

(C)(x- 3 )(x+3 )
(D) x 2 (64 2 _ 3 2

(E) x 2 - 6

3. x2 + 5x+ 6 =

(A)(x- 3 )(x- 2 )
(B)(x+ 6 )(x- 1 )

(C)(x+ 2 )(x+ 3 )

(D)(x+ 6 )(x+ 1 )

(E)(x+ 5 )(x+ 1 )

4. Which expression is equal to x (6x + 4) + 2x - 4 ?

(A) 7 x2 + 2 x

(B)10x2+,...x- 4
(C) 6 x2 + 2 x

(D) 8 x2

(E) 6x2+ 6x -4

2b
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5. If 3x2 - 12x =0, x

(A) -4 only

(B) 0 only
(C) 4 only
(D) 0 or -4
(E) 0 or 4

6. The greatest common factor of 34x3y + 51x2y2 is

(A) 17 x2 y

(B) 3 xy

(C) x y

(D) 17 x y

(E) 17 x3 y2

7. What is the missing factor?

6x2 -x- 35 .(3x+7)( ? )

(A) (3x + 5)

(B) (3x 5)

(C) (2x + 5)
(D) (2x 5)

(E) (2x 7)

8. The missing factor in 21a6b3 = 7a2 b ( ? ) is

(A) 3 a 4

(B) 3 ( a 4 + b2)

(C) 3 a3b2
(D) 3 a4b2
(E) 14 a 3b 2
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9. If x 2 -14 x + k 2 = (x - k) 2, which of the following is the value of k ?
(A) 2
(B) 7
(C) 14
(D) 28

(E) 49

10. One factor of 2x 2 - 1 lx - 21 is

(A) (2x - 7)

(B) (2x 3)

(C) (2x + 3)

(D) (x - 3)

(E) (x + 3)

11. One factor of 32x 3 - 8x is

(A) (4x 2 + 1)

(B) (2x + 1)

(C) (4x - 1)

(D) (2x - 2)

(E) (x - 2)

12. If (4x - 1) 2 - (2x + 3) 2 = (6x + 2) (2x - 1) then x =

(A) 1/4

(B) 2
(C) -3/2
(D) -1/2

(E) -1/3
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13. What is the missing term?

(8n +5)2=64n2+1+25

(A) 0
(B) 13 n

(C) 20 n

(D) 40 n

(E) 80 n
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15. The product of two consecutive, positive odd numbers is 63.

What is the sum of these two numbers?

(A) 9

(B) 16
(C) 17

(D) 18

(E) 19


